Reactions of Carbonyl Compounds with Tervalent Phosphorus Reagents. Part IV. ${ }^{1}$ Structure of a Tetracyclone-Dimethyl Phosphonate Adduct revised by \boldsymbol{X}-Ray Crystal Analysis

By John Iball," Peter Kaye, and J. Allen Miller, Chemistry Department, The University, Dundee DD1 4HN, Scotland

The structure of the $\alpha \beta$-unsaturated ketone product of the thermal reaction of tetracyclone with dimethyl phosphonate has been determined by X-ray single-crystal analysis. The unit cell is triclinic with a $=12.088 \pm 0.005$. $b=15.817 \pm 0.005, c=8.914 \pm 0.005 \AA, \alpha=82.6 \pm 0.1^{\circ} . \beta=119.0 \pm 0 \cdot 1^{\circ}, \gamma=120.9 \pm 0.01^{\circ} ; Z=2$, space group PT. The structure was solved from diffractometer data by direct methods, and refined by block-diagonal least-squares techniques to $R 0.083$ for 4828 observed reflections. The adduct is now shown to be a $\boldsymbol{\gamma}$-ketophosphonate and steric factors are believed to control its formation.

The reactions between cyclopenta-2,4-dienones and dimethyl phosphonate (la) are extremely complex, ${ }^{2-4}$

(1) $\mathrm{a}: \mathrm{R}=\mathrm{OMe}$
(2) $a ; R=P h$ $b: R=M e$

(4) $a ; R=P h$
$b: R=M e$

(5)
and the products formed are largely dependent upon experimental conditions (see Scheme). Among the products two different types of $\alpha \beta$-unsaturated ketone have been described. These are the ketones (3a) and (3b), reported ${ }^{2}$ to be formed when 2,3,4,5-tetraphenyl-cyclopenta-2,4-dienone [tetracyclone (2a)] is treated with (la) in the presence of morpholine, and the ketone (4a), isolated from a reaction of (2a) when heated under reflux in an excess of dimethyl phosphonate. ${ }^{3}$ The structures (3a) and (3b) were assigned ${ }^{2}$ by analogy with the adduct (5), from methyl phenylphosphinate and (2a), while that of (4a) was based ${ }^{3}$ on analogy with the structure of the adduct (4b), formed by 2 -methyl-3,4,5-triphenylcyclopenta-2,4-dienone (2b) and (1a). In view of the apparent contrast in the structures (3) and (4) it was felt that additional evidence should be obtained, and we now report the X-ray crystallographic analysis of the ketophosphonate to which structure (4a)
${ }_{1}$ Part III, W. M. Horspool, S. T. McNeilly, J. A. Miller, and I. M. Young, J.C.S. Perkin I, 1972, 1113.
${ }^{2}$ M. J. Gallacher and I. D. Jenkins, J. Chem. Soc. (C), 1971, 210.
has been assigned. Arbusov and his colleagues have independently expressed ${ }^{4}$ a similar doubt about the assignment of structure (3a) or (4a) to the $\alpha \beta$-unsaturated ketonic product of these reactions.
experimental and results
Crystal Data.- $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P}, \quad M=494 \cdot 5$. Triclinic, $a=$ $12.088 \pm 0.005, b=15 \cdot 817 \pm 0.005, c=8.914 \pm 0.004 \AA$, $\alpha=82.6 \pm 0.05^{\circ}, \beta=119.0 \pm 0.05^{\circ}, \gamma=120.9 \pm 0.05^{\circ}$, $U=1262.8 \AA^{3}, D_{\mathrm{c}}=1.300, Z=2, D_{\mathrm{m}}=1.293 \mathrm{~g} \mathrm{~cm}^{3}$, $F(000)=520$. No systematic absences, space group P1 or $P \overline{1}$; intensity statistics indicated the crystal to be centrosymmetric, the latter therefore adopted. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=13.27 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Short prisms were obtained by crystallisation from light petroleum-benzene; (001), (100), and (010) faces were well developed. Intensities were collected on a Wooster four-circle diffractometer from crystals mounted on the a, b, and c axes. No corrections were made for absorption but all the intense reflections were measured with a small crystal, ground to an approximate sphere. 4828 Reflections had intensities large enough to be accepted as observed.

Structure Analysis.-The observed structure factors were analysed by means of a Wilson plot to obtain an approximate absolute scale and an overall isotropic temperature factor ($B 4 \cdot 1 \AA^{2}$). The F_{0} values were converted into normalized structure factors (E) by means of a computer program supplied by Dr. P. Main. The $408 E$ values >1.77 were used to derive phases. The following reflections were selected to fix the origin and each was given a phase of $0^{\circ}: 2, \overline{9}, 5,10, \overline{1}, \overline{4}$, and $1, \overline{1}, 4$. Four further reflections: $3, \overline{14}, 6,9, \overline{13}, \overline{3}, 0,4,5$, and $\mathbf{7}, \overline{1}, 0$ were selected as starting phases for the direct phase-determination process, each, in turn, having phases of 0 or 180°. There were 16 sets of phases, including the trivial solution where all phases are 0°. A figure of merit is calculated for each set and the highest value was the trivial solution. The set of phases with the next highest figure of merit gave the
${ }^{3}$ J. A. Miller, G. M. Stevenson, and B. C. Williams, J. Chem. Soc. (C), 1971, 2714.
${ }^{4}$ A. V. Fuzhenkova, A. F. Zinkovskii, and B. A. Arbuzov, Dohlady Akad. Nautk S.S.S.R., 1971, 201, 632 (Chem. Abs., 1972, 76, 127 092).

Scheme Reported ractions of tetracyclone with dimethyl phosphonate: (i) Morpholine at $20{ }^{\circ} \mathrm{C}$ (ref. 2); (ii) heating under reflux (ref. 3); (iii) NaHCO_{3} (ref. 3) or $\mathrm{Et}_{3} \mathrm{~N}$ (ref. 4) at $20^{\circ} \mathrm{C}$
correct solution. An (E) Fourier synthesis was computed and 22 of the highest peaks could be identified as forming a reasonable molecule. The highest peak (twice the height of the next highest) was assumed to be the phosphorus atom. Structure factors (F_{c}) were now calculated for all observed reflections with the co-ordinates obtained for the 22 peaks; R was then $0 \cdot 486$. From further F_{o}

Table 1

Fractional co-ordinates, with estimated standard deviations in parentheses

Atom	x	y	\%
$\mathrm{P}(1)$	$0 \cdot 5343(3)$	0.2358(2)	$0 \cdot 2066$ (4)
$\mathrm{O}(1)$	$0 \cdot 3636(8)$	$0 \cdot 1584(6)$	0.0937(10)
$\mathrm{O}(2)$	$0 \cdot 5939(8)$	$0 \cdot 3202(6)$	$0 \cdot 1250$ (10)
$\bigcirc(3)$	$0 \cdot 6067(7)$	$0 \cdot 1706(5)$	0.2549(9)
$\mathrm{O}(4)$	$0 \cdot 3506(7)$	0.0912(6)	$0 \cdot 6251$ (10)
C(1)	$0 \cdot 3937(10)$	0-1508(7)	$0 \cdot 5366$ (13)
$\mathrm{C}(2)$	$0 \cdot 3411$ (9)	0.2178(7)	0.4467(13)
$\mathrm{C}(3)$	$0 \cdot 4221$ (9)	$0 \cdot 2770$ (7)	$0 \cdot 3705(12)$
C(4)	$0 \cdot 5501$ (9)	$0 \cdot 2629$ (7)	0.4144 (12)
C(5)	$0.5128(9)$	$0 \cdot 1648(7)$	$0 \cdot 5004(13)$
$\mathrm{C}(6)$	$0 \cdot 7023(9)$	$0 \cdot 3522(7)$	$0.5346(12)$
C(7)	$0 \cdot 8291(10)$	$0 \cdot 3692(7)$	$0.5408(14)$
C(8)	$0 \cdot 9670$ (11)	0.4476(9)	$0.6581(15)$
C(9)	$0 \cdot 9828(12)$	$0 \cdot 5078$ (9)	0.7683 (16)
$\mathrm{C}(10)$	$0 \cdot 8575$ (12)	0.4932(9)	$0 \cdot 7656$ (17)
C(11)	$0 \cdot 7181(10)$	$0.4141) 8$)	$0 \cdot 6490$ (14)
C(12)	$0 \cdot 3891$ (9)	$0 \cdot 3451(7)$	$0.2514(12)$
C(13)	$0 \cdot 2440$ (10)	$0 \cdot 3085$ (8)	$0 \cdot 1189(14)$
C(14)	$0 \cdot 2048(11)$	$0 \cdot 3673$ (9)	$0 \cdot 0017(16)$
C(15)	$0 \cdot 3111(11)$	$0 \cdot 4655(8)$	$0 \cdot 0155$ (15)
C(16)	$0 \cdot 4546(11)$	$0 \cdot 5036$ (8)	$0 \cdot 1455$ (15)
C(17)	$0 \cdot 4961$ (10)	$0 \cdot 4431$ (8)	$0 \cdot 2608$ (15)
$\mathrm{C}(18)$	$0 \cdot 2198(9)$	$0 \cdot 2163$ (7)	$0 \cdot 4509$ (13)
C(19)	$0 \cdot 0920$ (10)	$0 \cdot 1263$ (8)	$0 \cdot 4235$ (14)
$\mathrm{C}(20)$	-0.0205(11)	$0 \cdot 1245(9)$	$0 \cdot 4335(16)$
$\mathrm{C}(21)$	-0.0056(12)	$0 \cdot 2130(10)$	$0 \cdot 4724(17)$
$\mathrm{C}(22)$	$0 \cdot 1211(12)$	$0 \cdot 3040$ (9)	$0 \cdot 4983$ (18)
C(23)	$0 \cdot 2315(11)$	$0 \cdot 3046$ (8)	$0 \cdot 4852(15)$
$\mathrm{C}(24)$	$0 \cdot 6395(10)$	$0 \cdot 1615(8)$	$0.6578(14)$
$\mathrm{C}(25)$	$0 \cdot 6989(12)$	$0 \cdot 2084(9)$	$0.8224(16)$
$\mathrm{C}(26)$	$0 \cdot 8119(17)$	$0 \cdot 1975$ (13)	$0.9674(19)$
C(27)	$0 \cdot 8569(15)$	$0 \cdot 1397(11)$	$0.9422(21)$
C(28)	$0 \cdot 7996(14)$	$0 \cdot 0935$ (10)	$0 \cdot 7796(21)$

Table 1 (Contimued)

Atom	x	y	z
C(29)	$0 \cdot 6913(11)$	0•1047(8)	$0 \cdot 6360$ (16)
$\mathrm{C}(30)$	$0.5564(13)$	$0 \cdot 0874(10)$	$0 \cdot 1397$ (18)
$\mathrm{C}(31)$	$0 \cdot 2781$ (16)	$0 \cdot 1580(13)$	-0.0908(20)
$\mathrm{H}(\mathrm{l})[\mathrm{C}(7)]$	$0 \cdot 8197$	$0 \cdot 3218$	$0 \cdot 4572$
$\mathrm{H}(2)[\mathrm{C}(8)]$	I.0606	$0 \cdot 4612$	$0 \cdot 6577$
$\mathrm{H}(3)[\mathrm{C}(9)]$	1.0880	$0 \cdot 5636$	$0 \cdot 8604$
$\mathrm{H}(4)[\mathrm{C}(10)]$	$0 \cdot 8672$	$0 \cdot 5417$	$0 \cdot 8511$
$\mathrm{H}(5)[\mathrm{C}(11)]$	$0 \cdot 6241$	$0 \cdot 4029$	$0 \cdot 6481$
$\mathrm{H}(6)[\mathrm{C}(13)]$	$0 \cdot 1614$	$0 \cdot 2321$	$0 \cdot 1085$
$\mathrm{H}(7)[\mathrm{C}(14)]$	$0 \cdot 0892$	0.3344	-0.0952
$\mathrm{H}(8)[\mathrm{C}(15)]$	$0 \cdot 2799$	0.5114	-0.0747
$\mathrm{H}(9)[\mathrm{C}(16)]$	$0 \cdot 5403$	0.5805	$0 \cdot 1597$
$\mathrm{H}(10)[\mathrm{C}(17)]$	$0 \cdot 6089$	0.4704	0.3543
$\mathrm{H}(11)[\mathrm{C}(19)]$	0.0798	0.0578	$0 \cdot 3917$
$\mathrm{H}(12)[\mathrm{C}(20)]$	-0.1174	$0 \cdot 0555$	$0 \cdot 4106$
$\mathrm{H}(13)[\mathrm{C}(21)]$	-0.0909	$0 \cdot 2107$	0.4837
$\mathrm{H}(14)[\mathrm{C}(22)]$	$0 \cdot 1336$	$0 \cdot 3743$	0.5255
$\mathrm{H}(15)[\mathrm{C}(23)]$	$0 \cdot 3308$	$0 \cdot 3734$	0.5091
$\mathrm{H}(16)[\mathrm{C}(20)]$	$0 \cdot 6474$	$0 \cdot 0681$	0.5080
$\mathrm{H}(17)[\mathrm{C}(28)]$	$0 \cdot 8441$	0.0538	$0 \cdot 7698$
$\mathrm{H}(18)[\mathrm{C}(27)]$	0.9359	0.1307	1.0511
$\mathrm{H}(19)[\mathrm{C}(26)]$	$0 \cdot 8562$	$0 \cdot 2310$	1.0994
$\mathrm{H}(20)[\mathrm{C}(25)]$	$0 \cdot 6563$	$0 \cdot 2493$	$0 \cdot 1811$

syntheses it was possible to identify 36 atoms which had reasonable peak heights and sensible bond lengths and angles. A structure-factor calculation with 2799 reflections and assuming one phosphorus atom and 35 'carbons' with an overall temperature factor B of 3.0 gave $R 0 \cdot 27$. At this point the oxygen atoms were identified and subsequent least-squares refinement (blockdiagonal) reduced R to $0 \cdot 15$. The positions of the hydrogen atoms were now calculated and included in all calculations of structure factors but they were not themselves refined. The final R, after refining non-hydrogen atoms with anisotropic temperature parameters, was 0.083 . Final atomic co-ordinates are given in Table 1, and temperature parameters in Table 2. The numbering of the atoms is shown in Figure 1 together with bond lengths and angles. The standard deviation for the $\mathrm{P}-\mathrm{C}$ bond is 0.010 , and for the $\mathrm{P}-\mathrm{O}$ bonds they are $\mathrm{P}-\mathrm{O}(1) 0.009$,

TABLE 2
Temperature parameters
(a) Anisotropic temperature parameters * $(\times 105)$

Atom	b_{11}	b_{12}	13	b_{22}	b_{23}	b_{33}
$\mathrm{P}(\mathrm{I})$	1332 (2)	836(2)	1404(4)	412(1)	461(3)	1396(4)
$\mathrm{O}(1)$	$1595(8)$	927(8)	991(14)	675(4)	132(12)	1418(12)
$\mathrm{O}(2)$	2037(8)	943(9)	2429(14)	587(4)	806(12)	1856(12)
$\mathrm{O}(3)$	1769(6)	1107(5)	1569(11)	534(3)	-96(9)	2018(11)
$\mathrm{O}(4)$	1430(7)	953(8)	2341(13)	$601(4)$	1358(12)	2385(12)
C(I)	1074(8)	660(9)	1177(16)	435(4)	504(14)	1448(15)
C(2)	0969(8)	644(8)	1075(15)	418(4)	330 (14)	1412(14)
C(3)	0947(8)	564(8)	857(15)	365(4)	300 (13)	1267(14)
$\mathrm{C}(4)$	0936(7)	640(7)	990 (14)	371 (4)	333 (13)	1334(13)
C(5)	1002(8)	679(8)	1062(16)	420(4)	510(14)	1425(14)
$\mathrm{C}(6)$	981 (8)	612(8)	986(14)	397(4)	421(13)	1348(14)
$\mathrm{C}(7)$	$1158(9)$	760(9)	1206(17)	495(5)	437(15)	1630(16)
$\mathrm{C}(8)$	1292(11)	919(11)	1565(20)	645(6)	768(19)	1981(19)
$\mathrm{C}(9)$	1500(11)	934(12)	1278(23)	636(6)	545(20)	2091(21)
C(10)	1614(12)	1048(11)	1447(22)	645(6)	148(20)	2080(21)
C(11)	1195(9)	797 (10)	1203(17)	538(5)	212(16)	1676(17)
C(12)	967(8)	649(8)	1072(15)	379(4)	364 (13)	1414(14)
C(13)	1216 (9)	766(10)	1240(18)	515(5)	685(16)	1746(17)
C(14)	1330(10)	976(11)	1321(21)	649(6)	860(19)	2011(19)
C(15)	1406(10)	1038(10)	$1530(20)$	568(5)	810(18)	2075(19)
C(16)	1370 (10)	904(10)	1543(19)	494(5)	$710(17)$	2015(18)
C(17)	1259(10)	775(10)	1189 (19)	474(5)	725(16)	1884(18)
C(18)	0980(8)	612 (8)	1055(15)	432(4)	388(14)	$1389(14)$
C(19)	$1196(9)$	788(9)	1360(18)	531 (5)	624(16)	1895(17)
$\mathrm{C}(20)$	1302(10)	870(11)	1680 (20)	666(6)	767(19)	2156(19)
C(21)	1468(11)	1172(13)	2039(22)	852(7)	708(22)	2415(22)
$\mathrm{C}(22)$	1616(11)	1286(12)	2126(23)	733(7)	357(21)	2601 (23)
$\mathrm{C}(23)$	$1254(9)$	847(10)	1566(18)	567(5)	250 (17)	1961(18)
$\mathrm{C}(24)$	$1148(9)$	710 (10)	1227(18)	478(5)	746(16)	1627(16)
$\mathrm{C}(25)$	1696(12)	885(13)	1606(23)	694(7)	922(20)	1937(19)
$\mathrm{C}(26)$	2180(19)	752(24)	2181(31)	1020(11)	1439(28)	2424(24)
C(27)	1657(15)	1149(17)	$1671(33)$	986(9)	1794(27)	3310 (29)
C(28)	1641(14)	1484(14)	2313(31)	876(7)	1619(26)	3342 (29)
$\mathrm{C}(29)$	1307(10)	975(10)	1555(20)	617 (5)	895(18)	2219(20)
C(30)	1855(12)	1492(12)	2107(25)	722(6)	-227(21)	2657(25)
C(31)	2338(17)	1601(19)	2096 (30)	1200(11)	332 (30)	2347(27)

(b) Isotropic temperature parameters

Table 3
Equations of mean planes in the form: $l X+m Y+n Z=$ d where X, Y, and Z are co-ordinates in \AA relative to the orthogonal axes. \dagger The deviations of the atoms from the plane (\AA) are given in square brackets. Atoms marked * are not included in the derivation of the plane. [Planes $(A),(B),(C)$, and (D) refer to the aromatic rings]

Atoms	l	m	n	d
Plane (A)	-0.989	-0.675	0.679	0.133

$[C(6)-0.004, C(7) 0.001, C(8)-0.001, C(9) 0.003, C(10)$ -0.006 , (C11) $0.006, \mathrm{C}(4) * 0.082]$
$\begin{array}{llllll}\text { Plane }(B) & -0.552 & 0.571 & 0.607 & 1.439\end{array}$ $[\mathrm{C}(12) 0.012, \mathrm{C}(13) 0.003, \mathrm{C}(14)-0.008, \mathrm{C}(15)-0.002$, $\left.\mathrm{C}(16) 0.017, \mathrm{C}(17)-0.022, \mathrm{C}(3)^{*} 0.012\right]$
Plane (C)
$-0.048 \quad-0.206 \quad 0.977 \quad 2.835$
$\left[\mathrm{C}(18) 0.010, \mathrm{C}(19)-0.001, \mathrm{C}(20)^{2}-0.007, \mathrm{C}(21) 0.007\right.$, $\left.\mathrm{C}(22) 0.003, \mathrm{C}(23)-0.011, \mathrm{C}(2)^{*} 0.068\right]$

Table 3 (Continued)
Atoms
Plane (D)

l	m	n	d
0.883	0.452	$-0 \cdot 129$	2.386

$[\mathrm{C}(24)-0.007, \mathrm{C}(25)-0.004, \mathrm{C}(26) 0.011, \mathrm{C}(27)-0.009$, $\left.\mathrm{C}(28)-0.002, \mathrm{C}(29) 0.010, \mathrm{C}(5)^{*}-0.109\right]$
$\begin{array}{lllll}\text { Plane }(E) & 0.249 & 0.448 & 0.859 & 4.174\end{array}$ $[\mathrm{C}(1) 0.058, \mathrm{C}(2) 0.000, \mathrm{C}(3)-0.057, \mathrm{C}(4) 0.084, \mathrm{C}(5)-0.084$, $\mathrm{P}(\mathrm{I})^{*}-1 \cdot 360, \mathrm{O}(1)^{*}-2 \cdot 556, \mathrm{O}(2)^{*}-1 \cdot 226, \mathrm{O}(3)^{*}$ $-1.544, \quad \mathrm{O}(4)^{*} \quad 0.179, \mathrm{C}(6)^{*} \quad 1.412, \mathrm{C}(12)^{*}-0.287$, $\begin{array}{lllll}\mathrm{C}(18)^{*} & 0.038, & \mathrm{C}(24)^{*} & 0.818, & \mathrm{C}(30)^{*} \\ -3.656]\end{array}$
Angles (deg.) between planes: $(E)-(A) 77 \cdot 9$; $(E)-(C) 42 \cdot 7$; (E) $-(B) 50 \cdot 2$; $(E)-(D) 71 \cdot 8$.
$\dagger Z$ is perpendicular to (001), Y is parallel to b, and x is perpendicular to Y and Z.

(a)

(b)

Figure 1 Bond lengths and angles, together with atom numbering system used in the analysis
$\mathrm{P}-\mathrm{O}(2) 0.010$, and $\mathrm{P}-\mathrm{O}(3) 0.009 \AA$. Other bonds have standard deviations in the range $0.014-0.024 \AA$. Figure 2 shows a view of the molecule projected on the plane $b c^{*}$.

The only intermolecular distances $<3.5 \AA$ are: $\mathrm{C}(8) \cdots \mathrm{C}^{\prime}(8) 3 \cdot 31, \mathrm{C}(15) \cdots \mathrm{O}^{\prime}(2) 3 \cdot 27, \quad \mathrm{C}(16) \cdots \mathrm{C}^{\prime}(16)$ $3 \cdot 30$, and $\mathrm{C}(30) \cdots \mathrm{C}^{\prime}(30) 3 \cdot 21 \AA$ (primed atoms are in the molecule at $\bar{x}, \bar{y}, \bar{z})$.

Observed and calculated structure factors are listed in Supplementary Publications No. SUP 20946 (8 pp.).*

Figure 2 A view of the molecule projected on the $b c^{*}$ plane

DISCUSSION

The mean planes of the benzene rings are given in Table 3; there are no deviations outside experimental error. The central five-membered ring is also planar.

The X-ray analysis reveals that the ketophosphonate, originally assigned structure (4a) is not a β-ketophosphonate, but is the γ-ketophosphonate (3a). The cisfusion of the methine hydrogen and the phosphorus

[^0]atoms in (3a), already indicated ${ }^{3}$ by the value of the vicinal coupling constant $[J(\mathrm{PCCH}) 14.0 \mathrm{~Hz}]$, is confirmed. We have found the γ-ketophosphonate (3a) to be a high-melting solid (m.p. $217-218{ }^{\circ} \mathrm{C}$), \dagger but the phosphonate assigned structure (3a) was isolated as an oil. ${ }^{2}$ This difference, together with the differences in ${ }^{1} \mathrm{H}$ n.m.r. spectra, which have been discussed elsewhere, ${ }^{3}$ indicates that a more detailed examination of the adducts formed in the presence of morpholine might be of interest.

The present result is significant with regard to a general rationalisation of the reactions between cyclopentadienones and reagents containing the $>\mathrm{P}(\mathrm{O}) \mathrm{H}$ group. It has been suggested ${ }^{3}$ that steric factors may be important in controlling product formation, and the fact that dimethyl phosphonate (la) is now known to react with tetracyclone (2a) at the β-carbon of the ketonic ring, but with (2 b) at the α-position, is consistent with this suggestion. Furthermore, the related reactions of the bulkier [with respect to (la)] reagent diphenylphosphine oxide (lb) result in attack at the α-position with either (2a) or (2b). Previous results ${ }^{2}$ gave grounds for suggesting ${ }^{3}$ that electronic factors were not likely to be decisive in directing addition to either the β - or α-positions of tetracyclone (2 a), and the contrast between the reactions of diphenylphosphine oxide (lb) and dimethyl phosphonate (la) with tetracyclone (2a) would appear to confirm the dominance of steric effects.

We thank J. D. Paton for invaluable help in collecting the data and for his assistance with the computing, the S.R.C. and the Cancer Research Campaign (to J. I.) for financial assistance, and Dr. P. Main, University of York, for programs of direct structure determination.
[3/2098 Received, 15th October, 1973]
\dagger A similar m.p. has been reported by M. P. Serridge (Ph.D. Thesis, University of Leicester, 1968; we thank Dr. T. L. Gilchrist for this information) and by the authors in ref. 4.

[^0]: * See Notice to Authors No. 7 in J.C.S. Perkin II, 1972, Index issue.

